Archer&Greiner RC. RECEIVE OPPT CB

2015 NOV 18 AH 11:58

Christopher R. Gibson Also Member of Pennsylvania Bar egibson@archerlaw.com 856-354-3077 Direct 856-673-7077 Direct Fax

One Centennial Square Haddonfield, NJ 08033 856-795-2121 Main 856-795-0574 Fax www.archerlaw.com

November 17, 2015

CONTAINS NO CEL

CBIC Control Number

VIA FEDEX

TSCA Confidential Business Information Center (7407M) EPA East – Room 6428 Attn: Section 8(e) U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460-0001

Re: Submission of Information Concerning Allegations of Environmental Contamination, Case No. 8EHQ-14-19758

Dear TSCA Section 8(e) Coordinator:

On behalf of Saint-Gobain Performance Plastics Corporation (SGPP), we are submitting this notice to provide information to the U.S. Environmental Protection Agency (EPA) concerning data regarding the presence of perfluorooctanoic acid (PFOA) in soil and groundwater samples at the SGPP McCaffrey Street Manufacturing Facility in Hoosick Falls, New York. SGPP processes fluoropolymers at the Hoosick Falls Facility that were made with ingredients containing PFOA. SGPP is not and has never been a manufacturer or distributor of PFOA. Since 2003, SGPP has participated in the industry's voluntary PFOA phase-out effort by purchasing raw materials with decreasing levels of PFOA as an ingredient.

On December 30, 2014, SGPP provided notice pursuant to Section 8(e) of the Toxic Substances Control Act (TSCA), 15 U.S.C. § 2607(e), that SGPP was aware of PFOA measurements conducted by the Village of Hoosick Falls in three wells used to supply drinking water to the community. SGPP reported that the measurement from one well exceeded EPA's provisional health advisory (PHA) level for PFOA of 0.4 micrograms per Liter in drinking water. SGPP had no information as to whether this finding presented a significant risk of injury to human health or the environment. SGPP reported this information to EPA out of an abundance of caution and as a matter of good product stewardship.

In response to this finding, SGPP undertook a Phase I Investigation at SGPP's Hoosick Falls, McCaffrey Street Facility to determine whether PFOA was present in soil or groundwater underneath the Facility. PFOA was detected in five soil samples taken at the Facility but at concentrations that are below published EPA risk-based screening levels for residential and industrial sites. PFOA was also detected in groundwater at concentrations that exceed EPA's 0.4

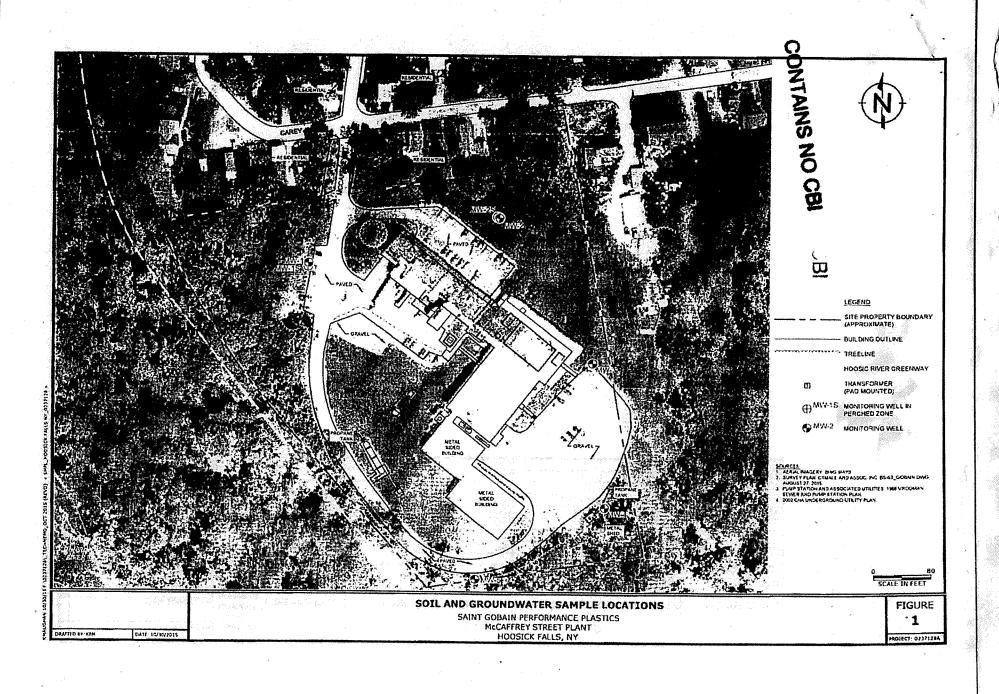
TSCA Confidential Business Information Center (7407M) November 17, 2015 Page 2

micrograms per Liter PHA for PFOA. The highest concentration of PFOA was detected in an upgradient well. SGPP is enclosing the soil and groundwater sampling results with this letter.

SGPP has no information as to whether these findings actually present a significant risk of injury to human health or the environment. SGPP is reporting this information under Section 8(e) of TSCA out of an abundance of caution and as part of SGPP's continued commitment to caring for the environment.

If you have any questions regarding these findings or the information reported in this letter, please contact Lauren Alterman, Vice President Environment, Health & Safety for Saint-Gobain Corporation (parent of Saint-Gobain Performance Plastics Corporation) at (610) 893-5946.

Very truly yours,


CHRISTOPHER R. GIBSON

CRG: MTC Enclosure

cc: Ms. Lauren Alterman, Saint-Gobain

CONTAINS NO CBI

113053078v1

TABLE 1 Summary of Soil Sampling Results SGPP Hoosick Falls

Location	USEPA	MW-1		MW-2				
	Region 4 Teld Sample ID Residential		SG1-MW01D-02.0	SG1-MW02D-00.0	SG1-DS01-150805	SG1-MW02D-02.0	5G1-MW02D-02.0	
Collection Depth (ft bgs)	Screening	0-2	2-4	0-2	0 - 2	2 - 4	2 - 4	
Sampling Date	LCTC10	8/10/2015	8/10/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015	
Comments	1		general Miles		Field Duplicate		Laboratory Duplicate	
PHYS PHYS					Y 72 1140 11		(M)(6)	
Moisture [%]	40.0	4 5 5.11	9.6	11	11	11	N/A	
PECS	**			1 - Paul				
Perfluorobutane Sulfonate (PFBS)	Na la	U (0.014)	U (0.014)	U (0.014)	Ü (0.014)	U (0.014)	U (0,014)	
Perfluoroheptanoic Acid (PFHpA)		U (0,015)	U (0.015)	U (0.015)	U (0.015)	U (0.015)	U (0,015)	
Perfluorohexane Sulfanate (PFHxS)		U (0.015)	U (0.015)	Ú (0,015)	U (0.015)	U (0.015)	U (0.015)	
Perfluoro-n-Octanoic Acid (PFOA)		1.0	2.4	1.3	1.5	0.35	0.41	
Perfluoronananic Acid (PFNA)		U (0.01)	U (0.01)	0,01	0.02	U (0.01)	V (0.01)	
Perfluorooctane Sulfonate (PFOS)				0.028	0.035	U (0.015)	U (0,015)	

Notes:

- 1 All units in ug/kg (ppb) except where otherwise noted.
- ² USEPA Region 4, 2009, "Soil Screening Levels for Perfluoroctanoic Acid (PFOA) and Perfuoroctyl Sulfonate (PFOS)."

- Abbreviations: U -- Not Detected () -- Method Detection Limit N/A -- Not Analyzed

TABLE 1 Summary of Soll Sampling Results SGPP Hoosick Falls

	Location	USEPA	му	V-3	MW-4		MW-S	
	Field Sample ID Collection Depth (ff bgs) Sampling Date	Region 4 Residential Screening Levels [2]	SG1-MW035-00.0 0 - 2 8/13/2015	2-4	0-2	2 - 4	0 - 2	SG1-MW05S-02.0 2 - 4 8/11/2015
L	Comments							
PI	HYS							
	Moisture (%)		• 14	16	22	25	12	15
PI	FCS							
	Perfluorobutane Sulfonate (PFBS)		U (0.014)	U (0.014)	0.039	U (0.014)	U (0.14)	U (0.014)
	Perfluoroheptanoic Acid (PFHpA)		0.11	บ (0.015)	0.17	0.080	U (0.15)	0.038
	Perfluorohexane Sulfonate (PFHxS)		U (0.015)	U (0.015)	0.15	U (0.015)	U (0.15)	U (0.015)
	Perfluoro-n-Octanoic Acid (PFOA)	16000	2,5	0.67	4.1	1.8	1.4	1.2
	Perfluorononanoic Acid (PFNA)		0.11	0.03	0.14	0.07	U (0.1)	0.06
	Perfluprooctane Sulfonate (PFOS)	6000	0.19	0.018	0.63	0.28	0.25	0.099

Notes:

- All units in ug/kg (ppb) except where otherwise noted.
- 2 USEPA Region 4, 2009, "Soil Screening Levels for Perfluorooctanoic Acid (PFOA) and Perluorooctyl Sulfonate (PFOS)."

Abbreviations:

- U -- Not Detected
- () Method Detection Limit
- N/A -- Not Analyzed

TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

Location	USEPA			MW-1S			
Field Sample ID	Drinking Water Provisional	Unspecified Organic	SG1-MW01-150903	SG1-MW01-151001	SG1-MW01S-150903	SG1-MW01S-151001	
Sample Date	Health Advisory	Contaminant Criteria (4)	9/3/2015	10/1/2015	9/3/2015	10/1/2015	
Comments	Levels (3)						
PFCS		Ty .					
Perfluorobutane Sullonate (PFBS)	14 Told	50000	U (8.5)	U (8.5)	U (8.5)		
Perfluoroheotanoic Acid (PFHpA)	** K	50000	U (2.2)	U (2.2)	20 (2.2)		
Perfluorohexane Sulfonate (PFHxS)	* # #	50000	U (2.9)	U (2.9)	U (2.9)		
Perfluoro-n-Octanolc Acid (PFOA)	400	50000	U (1.6)	U (1.6)	U (1.6)		
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)	U (2.3)		
Perfluorooctane Sulfonate (PFOS)		50000	Ų (2.1)	U (2.1)	Ü (2.1)	U (2.1	

Notes:

- 1 All concentrations are presented in ng/L (ppb).
- 2 Detected concentrations exceeding a comparison criterion are shown in bold text.
- USEPA. Provisional Health Advisories for perfluorocctanoic Acid (PFOA) and Perfluorocctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November. https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart _5-1_tables.htm
- 5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

Abbreviations: U -- Not Detected.

() -- Detection Limit.

TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

Location	USEPA Drinking	NYSDOH		MW-2	HW-25		
Field Sample ID	Water Provisional Health Advisory	Unspecified Organic	SG1-MW02-150902	SG1-MW02-150930	SG1-MW02-150930	5G1-MW02S-150902	SG1+MW02S-151001
Sample Date		Contaminant Criteria (4)	9/2/2015	9/30/2015	9/30/2015		
Comments	Levels (3)				Split Sample (5)		
PFCS	70 y 50		The state of the s			The second secon	
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	V (8.5)	11.64.31	0.70.51	
Perfluoroheptanoic Acid (PFHpA)		50000	340 (2.2)	310 (2.2)	U (4,7)		
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)		390 (5.4)	72.7.7	
Perfluoro-n-Octanolc Acid (PFOA)				U (2.9)	U (5.4)		U (2.9)
Perfluorononanoic Acid (PFNA)			18000 (1.6)	17000 (1.6)	16000 (180)		750 (1.6)
Perfluorooctane Sulfonate (PFOS)		50000	U (2.3)	U (2.3)	U (6.3)	U (2.3)	U (2.3)
Notes:	200	50000	U (2.1)	U (2.1)	U (3.7)	U (2.1)	U (2.1)

- 1 All concentrations are presented in ng/L (ppb).
- 2 Detected concentrations exceeding a comparison criterion are shown in bold text.
- 3 USEPA, Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS), 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November. https://www.health.ny.gov/regulations/nycrr/bitle_10/part_5/subpart _5-1_tables.htm
- 5 A split sample from HW-02 was submitted for laboratory analysis to Haxxam Analytics of Hississauga, Ontario, Canada, All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

Abbreviations:

- U -- Not Detected.
- () -- Detection Limit.

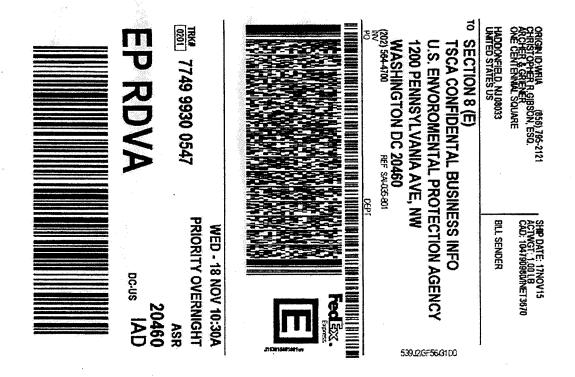
TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

Т		USEPA		MW-3			MW-4		
╂	Location	Drinking Water	NYSDOH Unspecified	SG1-MW03-150903	SG1-DS01-150903	SG1-MW03-151001	SG1-MW04-150903	5G1-MW04-151001	SG1-DS01-15100
+	Field Sample ID	Provisional Health	Organic Contaminant	9/3/2015	9/3/2015	10/1/2015	9/3/2015	10/1/2015	10/1/201
+	Sample Date	Advisory Levels (3)	Criteria (4)		Field Duplicate			í	Field Duplical
	Comments	23.5						U (8.5)	U (8,
FC	S		50000	U (8.5)	U (8.5)	U (8.5)			40 (2.
1	Perfluorobutane Sulfonate (PFBS)		50000		130 (2.2)	120 (2.2)			U (2.
	Perfluoroheptanoic Acid (PFHpA)		50000		U (2.9)				1400 (1.0
	Perfluorohexane Sulfonate (PFHxS)				4200 (1.6)	4300 (1.5)			
Т	Perfluoro-n-Octanoic Acid (PFOA)	400	50000		บ (2.3)	U (2.3)			
T	Perfluorononanole Acid (PFNA)						U (2,1)	U (2.1)	U (2.:
101	Perfluorooctane Sulfonate (PFOS)	200	50000	1 9 (2.12)					

- 1 All concentrations are presented in ng/L (ppb).
- 2 Detected concentrations exceeding a comparison criterion are shown in bold text.
- 3 USEPA, Provisional Health Advisories for perfluorooctanoic Acid (PFDA) and Perfluorooctane Sulfonate (PFOS), 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public-Water Systems, November. https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart _5-1_tables.htm
- 5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

Abbreviations: U -- Not Detected.

() -- Detection Limit.


	Location	USEPA Drinking	NYSDOH	MW-5			
	Field Sample ID	Water Provisional	Unspecified Organic	SG1-MW05-150903	SG1-MW05-151001		
	Sample Date	Health Advisory	Contaminant Criteria (4)	9/3/2015	10/1/2015		
	Comments	Levels (3)					
PF	CS						
Г	Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)		
Г	Perfluoroheptanoic Acid (PF)(pA)		50000	10 (2.2)	10 (2.2)		
	Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)		
	Perfluoro-n-Octanoic Acid (PFOA)	400	50000	580 (1.6)	570 (1.6)		
	Perfluorononanoic Acid (PFNA)		50000	U (2,3)	U (2.3)		
	Perfluorooctane Sulfonate (PFOS)	200	50000	Ų (2.1)	U (2.1)		

Notes:

- 1 All concentrations are presented in ng/L (ppb).
- Detected concentrations exceeding a comparison criterion are shown in bold text.
- USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November. https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm
- 5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

Abbreviations:

- U -- Not Detected.
- () -- Detection Limit.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1001 G Street, N.W. Suite 500 West Washington, D.C. 20001 tel: 202.434.4100 fax 202.434.4646

CBIC Control Number

364984

NECEIVED OPPT COIC

2015 MAY 11 PH 3: 35

DES HOT CONTOIN

Meere

Writer's Direct Access David G. Sarvadi (202) 434-4249 sarvadi@khlaw.com

May 8, 2015

Via Hand Delivery

TSCA Confidential Business Information Center (7407M) Attn: Section 8(e) 1201 Constitution Avenue, NW WJC East; Room 6428 Washington, DC 20004-3302

CONTAINS NO CBI

Submission of Supplemental Information Concerning Allegations of Environmental Contamination; TSCA Section 8(e) Case Number 8EHQ-14-19758

Dear TSCA Section 8(e) Coordinator:

On behalf of our client, Saint-Gobain Performance Plastics Corporation (SGPP), we are submitting supplemental information following up on our previous reports under section 8(e) of the Toxic Substances Control Act (TSCA), 15 U.S.C. § 2607(e), concerning the presence of perfluorooctanoic acid (PFOA) detected in tests of the public drinking water supplies of the Village of Hoosick Falls, New York (the Village). The U.S. Environmental Protection Agency (EPA) has assigned this case number 8EHQ-14-19758.

As we previously reported, testing of the Village of Hoosick Falls public drinking water supplies was originally sponsored by the Village. We reported the findings of this testing on December 30, 2014. SGPP subsequently contracted with a local consultant to re-test the public drinking water supplies in conjunction with the Village. Split samples collected at the same time were sent to each of two EPA-certified laboratories for analysis using EPA Method 537. The same laboratory that analyzed the previous samples reported results consistent with its earlier findings. The second laboratory reported results approximately two times higher than those from the first laboratory. We reported these results to EPA on March 17, 2015, and noted that due to the discrepancy between these results, we asked both laboratories to review their sample handling, laboratory procedures, calculations, and quality assurance and quality control (QA/QC) procedures.

KELLER AND HECKMAN LLP

TSCA Confidential Business Information Center (7407M) May 8, 2015 Page 2

Based on this review, we are writing today to report that the second laboratory, which reported results twice as high as the first laboratory, has informed us that it believes there was a problem with their results. We are considering our next steps in light of this information.

SGPP has no information as to whether a significant risk of injury to human health or the environment is actually presented by the findings. Nonetheless, out of an abundance of caution and as a matter of good product stewardship we think it prudent to submit this information to EPA under section 8(e) of TSCA.

We trust that the Agency finds this information useful. If you have any questions, please contact Lauren Alterman, Vice President - Health, Safety & Environment of Saint-Gobain Corporation (parent company of SGPP), at (610) 341-7838.

Respectfully submitted,

David G. Sarvadi

Counsel to Saint-Gobain

Ms. Lauren Alterman, Saint-Gobain

Corporation

cc:

KELLER AND HECKMAN LLP

1001 G STREET, N.W. SUITE 500 WEST

WASHINGTON, D.C. 20001

TO:

TSCA Confidential Business Information Center (7407M) Attn: Section 8(e) 1201 Constitution Avenue, NW WJC East; Room 6428 Washington, DC 20004-3302